Update on Decolonization for MDROs

Susan Huang, MD MPH Chancellor's Professor, Division of Infectious Diseases Medical Director, Epidemiology & Infection Prevention University of California, Irvine School of Medicine

Disclosures

- Conducting clinical studies in which participating nursing homes or hospital patients received contributed cleaning or antiseptic products from Medline and Xttrium
- Companies had no role in design, conduct, analysis, or publication

CDC Surveillance Network: U.S. COVID Impact

	2020 Q1	2020 Q2	2020 Q3	2020 Q4
CLABSI	-11.8%	27.9%	46.4%	47.0%
CAUTI	-21.3%	No Change ¹	12.7%	18.8%
VAE	11.3%	33.7%	29.0%	44.8%
SSI: Colon surgery	-9.1%	No Change ¹	-6.9%	-8.3%
SSI: Abdominal hysterectomy	-16.0%	No Change ¹	No Change ¹	-13.1%
Laboratory-identified MRSA bacteremia	-7.2%	12.2%	22.5%	1 33.8%
Laboratory-identified CDI	-17.5%	-10.3%	-8.8%	-5.5%

Weiner-Lastinger LM et al. ICHE. 2021;41(1):1-18

Worsening Antibiotic Use with COVID-19

- Concern for bacterial co-infection in seriously ill COVID-19 patients
- In 605 U.S. hospitals ¹
 - 76% received antibiotics

Indiscriminate Use of Antibiotics for COVID-19 Treatment in South Asian Countries is a Threat for Future Pandemics Due to Antibiotic Resistance

COVID-19 CREATED A PERFECT STORM

The U.S. lost progress combating antimicrobial resistance in 2020

- 81% received antibiotics
- 80% deemed unnecessary

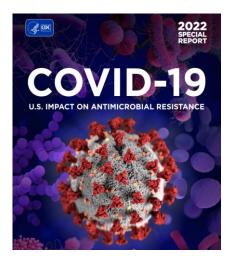
pandemic

Abi Manesh 🛛 George M Varghese 🖂 🕤 on behalf of the CENDRIC Investigators and Collaborators

Is there a need to widely prescribe antibiotics in patients hospitalized with COVID-19?

F. Moretto ^a, T. Sixt ^a, H. Devilliers ^{b, c}, M. Abdallahoui ^b, I. Eberl ^a, T. Rogier ^b, M. Buisson ^a, P. Chavanet ^a, M. Duong ^a, C. Esteve ^a, S. Mahy ^a, A. Salmon-Rousseau ^a, F. Catherine ^a, M. Blot ^{a, c}, L. Piroth ^{a, c} ^A ≅

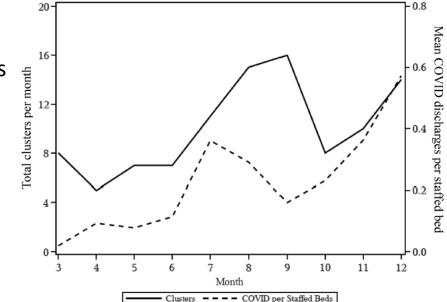
¹ Baghdadi JD et al. AACT 2021 65e01341-21


CDC

mic in a

U.S. Antimicrobial Resistance Progress Erased by COVID

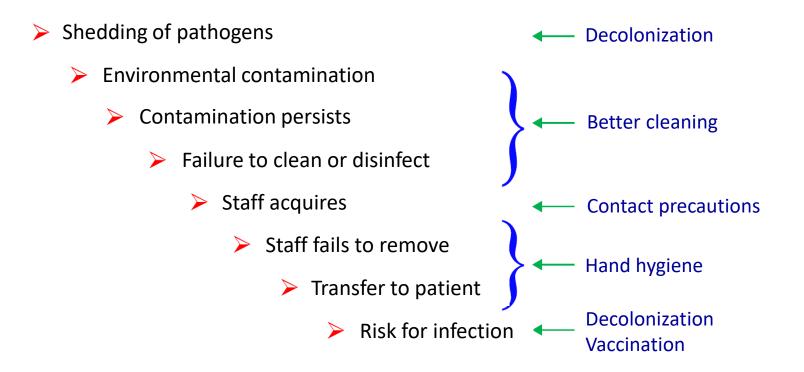
- 80% of COVID patients received antibiotics in 2020
- Hospital-onset MDROs between 2019 to 2020


\triangleright	CRAB	increased 78%
	Candida auris	increased 60%
	CRE	increased 35%
	ESBL	increased 32%
	MDR-Pseudomonas	increased 32%
	VRE	increased 14%
	MRSA	increased 13%

https://www.cdc.gov/drugresistance/pdf/covid19-impact-report-508.pdf

COVID Impact: Increase in U.S. Hospital Bacterial Outbreaks

148 U.S. Community Hospitals Hospital-onset pathogen clusters Statistically-derived



Baker MA et al. CID 2022;74(10):1748-1754

Human Pathogen Transmission: Cascade of Unfortunate Events

- Shedding of pathogens
 - Environmental contamination
 - > Contamination persists
 - Failure to clean or disinfect
 - Staff acquires
 - Staff fails to remove
 - Transfer to patient
 - > Risk for infection

Human Pathogen Transmission: Cascade of Unfortunate Events

Decolonization Prevents a Cascade of Unfortunate Events

Shedding of pathogens

- Environmental contamination
 - > Contamination persists
 - Failure to clean or disinfect
 - Staff acquires
 - Staff fails to remove
 - Transfer to patient

Broad solution for all MDROs Benefits carriers too > Risk for infection

What is Topical Decolonization?

- Topical antiseptic or antibiotic agents to remove commensals or pathogens from the skin or nose
- Most studied products:
 - Skin: chlorhexidine, iodophor (povidone-iodine)
 - > Nose: mupirocin, iodophor
- Strong safety record
- Targeted and universal uses

Use of Chlorhexidine

- Antiseptic uses in healthcare
 - Hand antisepsis at 2% and 4%
 - Dental hygiene
 - > 1990s: Cleaning of skin prior to line insertion
 - 1990s: Pre-operative bathing
 - 2000s: Surgical prep
 - > 2000s: Pre-op *S. aureus* carriers
 - > 2010s: Universal ICU bathing
 - > 2019: CHG for non-ICU bathing

Use of Chlorhexidine

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

- Antiseptic uses in healthcare
 - Hand antisepsis at 2% and 4%
 - Dental hygiene
 - > 1990s: Cleaning of skin prior to line
 - 1990s: Pre-operative bathing
 - 2000s: Surgical prep
 - > 2000s: Pre-op *S. aureus* carriers
 - 2010s: Universal ICU bathing
 - 2019: CHG for non-ICU bathing

Effect of Daily Chlorhexidine Bathing on Hospital-Acquired Infection

Michael W. Climo, M.D., Deborah S. Yokoe, M.D., M.P.H., David K. Warren, M.D., Trish M. Perl, M.D., Maureen Bolon, M.D., Loreen A. Herwaldt, M.D., Robert A. Weinstein, M.D., Kent A. Sepkowitz, M.D., John A. Jernigan, M.D., Kakotan Sanogo, M.S., and Edward S. Wong, M.D.

Targeted versus Universal Decolonization to Prevent ICU Infection

Susan S. Huang, M.D., M.P.H., Edward Septimus, M.D., Ken Kleinman, Sc.D., Julia Moody, M.S., Jason Hickok, M. B.A., R.N., Taliser R. Avery, M.S., Julie Lankiewicz, M.P.H., Adrijana Gombosev, B.S., Leah Terpstra, B.A., Fallon Harrford, M.S., Mary K. Hayden, M.D., John A.J. Pengian, M.D., Robert A. Weinstein, M.D., Victoria J. Fraser, M.D., Katherine Haffenreffer, B.S., Eric Cui, B.S., Rebecca E. Kaganov, B.A., Karen Lolans, B.S., Jonathan B. Perlin, M.D., Ph.D., and Richard Platt, M.D., for the CDC Prevention Epicenters Prenarm and the AHRQ DECIDE Network and Healthcrare-Associated Infections Program[®]

THE LANCET

Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial

Aaron M Milstone, Alexis Elward, Xiaoyan Song, Danielle M Zerr, Rachel Orscheln, Kathleen Speck, Daniel Obeng, Nicholas G Reich, Susan E Coffin, Trish M Perl, for the Pediatric SCRUB Trial Study Group

Summary

Background Bacteraemia is an important cause of morbidity and mortality in critically ill children. Our objective was to assess whether daily bathing in chlorhesidine gluconate (CHG) compared with standard bathing practices would reduce bacteraemia in critically ill children.

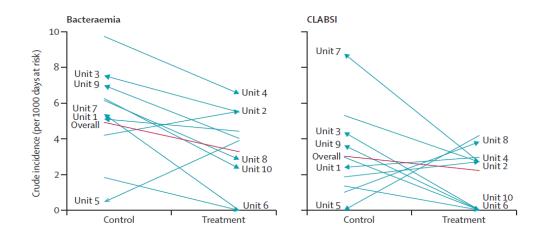
Use of Chlorhexidine

- Antiseptic uses in healthcare
 - Hand antisepsis at 2% and 4%
 - Dental hygiene
 - 1990s: Cleaning of skin prior to line insertion
 - 1990s: Pre-operative bathing
 - 2000s: Surgical prep
 - > 2000s: Pre-op *S. aureus* carriers
 - > 2010s: Universal ICU bathing
 - > 2019: CHG for non-ICU bathing

THE LANCET

Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): a cluster-randomised trial

Susan S Huang, Edward Septimus, Ken Kleinman, Julia Moody, Jason Hickok, Lauren Heim, Adrijana Gombosev, Taliser R Avery, Katherine Haffeneffer, Lauren Shimelman, Mary K Hayden, Robert A Weinstein, Caren Spencer-Smith, Rebecca E Kaganov, Michael V Murphy, Tyler Forehand, Julie Lankiewicz, Micaela H Coady, Lena Portillo, Jalpa Sarup-Patel, John A Jernigan, Jonathan B Perlin, Richard Platt, for the ABATE Infection trial team


Universal CHG Decolonization in Academic ICUs

- 12 Adult ICU cluster randomized cross-over trial
- 1 hospital dropped out \rightarrow 9 ICUs, 7,727 patients in 6 hospitals
 - ICUs: daily CHG baths & routine soap for 6 months each
 - $\circ~$ As-treated analysis
 - ✓ Reduced MRSA and VRE acquisition by 23%
 - ✓ Reduced bacteremia by 28%
 - ✓ Reduced CLABSI by 53%
- No evidence of CHG resistance

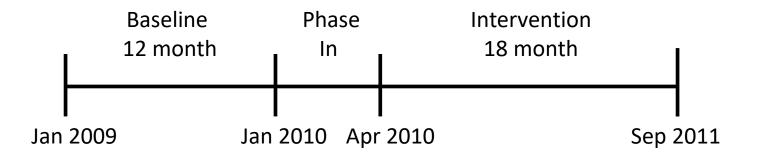
Pediatric SCRUB Trial

Universal CHG in 10 Academic PICUs

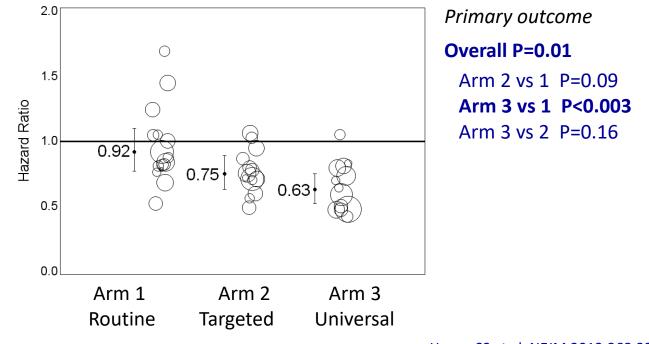
- Randomized cross-over trial of universal CHG bathing, N=1,547
- Two-thirds of parents consented
- As-treated analysis, 36% reduction in bloodstream infections

Milstone AM et al. Lancet 2013:381(9872):1099-106

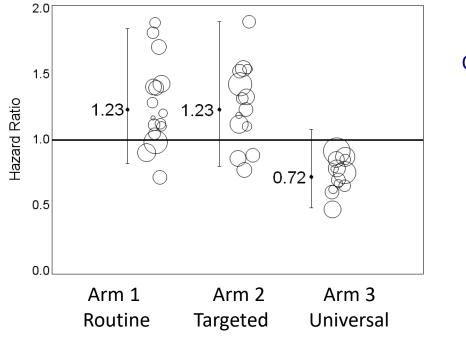
Reducing MRSA and Bloodstream Infections in Community ICUs


REDUCE MRSA Cluster Randomized Trial of Hospitals

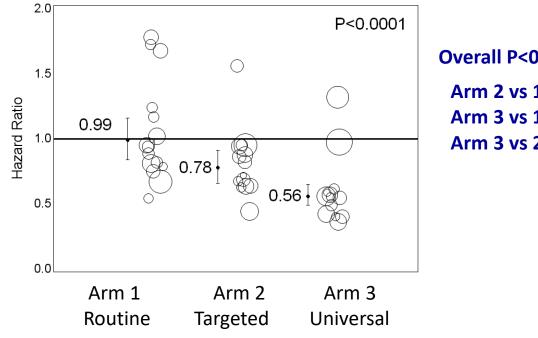
<u>R</u>andomized <u>E</u>valuation of <u>D</u>ecolonization vs. <u>U</u>niversal <u>C</u>learance to <u>E</u>liminate MRSA


- Arm 1: Routine Care
 - Screened all patients; isolated known MRSA+
- Arm 2: Targeted Decolonization
 - Screened all patients; isolated known MRSA+
 - Decolonized if MRSA+ (5 days mupirocin, 5 days CHG)
- Arm 3: Universal Decolonization
 - No screening; isolated known MRSA+
 - Decolonized all (5 days mupirocin, daily CHG)

Baseline and Intervention Periods


43 HCA Healthcare hospitals (formerly Hospital Corporation of America)74 adult ICUs and 282,803 ICU patient days74,256 patients

MRSA Clinical Cultures



MRSA Bloodstream Infection

Overall P=0.11

All Pathogen Bloodstream Infection

Overall P<0.0001 Arm 2 vs 1 P=0.04 Arm 3 vs 1 P<0.0001 Arm 3 vs 2 P=0.003

Additional Decolonization Impact

- Universal decolonization with mupirocin and CHG
 - Highly cost-effective and prevents need to screen ¹
 - Reduces blood culture contamination²
 - Reduces bacteriuria and candiduria in men³
 - No emergence of CHG or mupirocin resistance in trial ⁴
 - CLABSI benefit seen with rapid adoption in 95 hospitals ⁵
- 63% of all US hospitals use universal ICU decolonization⁶

¹ Huang SS et al. ICHE 2014; 35 S3:S23-S31 ² Septimus EJ et al. ICHE 2014; 35 S3:S17-S22. ³ Huang SS et al. Lancet ID 2016;16(1):70-9

⁴ Hayden M et al. JCM 2016; 54(11):2735-42 ⁵ Septimus ES et al. CID 2016;63(2):172-7 ⁶ NHSN survey, 2021

Decolonization Outside of ICUs

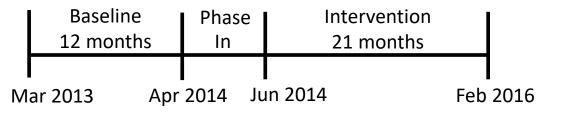
ABATE Infection Trial Active Bathing to Eliminate Infection

Cluster-randomized trial of 53 U.S. hospitals

194 adult non-ICU medical, surgical, step down, oncology units

Arm 1: Routine Care

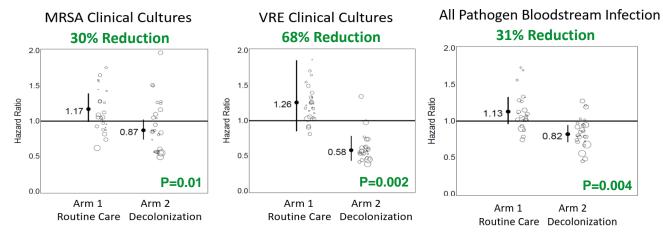
• Routine policy for showering/bathing


Arm 2: Decolonization

- Daily 4% rinse-off CHG shower or 2% leave-on CHG bed bath
- Mupirocin x 5 days if MRSA+ by history, culture, or screen

Outcomes and Study Period

• Primary Outcome


- Any MRSA or VRE isolate attributed to unit
- Key Secondary Outcome
 - Any bloodstream isolate attributed to unit (2 positives for skin commensals)
- 339,904 patients, 1,294,153 patient days (intervention)

Huang SS Lancet 2019;393(10177):1205-1215

Results: Decolonization Outside of ICUs

- No overall population benefit, unlike ICU trials
 - Lower risk and small effect size
- Benefit seen in higher risk patients with lines and devices

Huang SS Lancet 2019;393(10177): 1205-1215

Medical Devices: Attributable Impact

- Benefit seen in higher risk patients with lines and devices
 - $\,\circ\,$ 37% reduction in MRSA and VRE clinical cultures
 - 32% reduction in all pathogen bloodstream infection
 - $\,\circ\,$ 10% of population, but a third of MRSA+VRE cultures
 - \circ 10% of population, but 60% of bloodstream infections

CLEAR Trial

<u>Changing Lives by Eradicating Antibiotic Resistance</u>

RCT of 2,121 MRSA+ recently hospitalized patients Randomized on discharge, followed for 1 year

Arm 1: Routine Care

Arm 2: Post-Discharge Decolonization

- 5-day regimen, twice monthly for 6 months
 - Twice daily 2% nasal mupirocin
 - Twice daily 0.12% chlorhexidine oral rinse
 - > Daily 4% rinse-off chlorhexidine bath/shower

Time to Infection Outcomes

	Hazard Ratio (95% CI) Decolonization vs Education	P-value
CDC NHSN Criteria		
MRSA Infection	0.70 (0.52-0.96)	0.026
Any Infection	0.84 (0.70-1.01)	0.061
Clinical Criteria		
MRSA Infection	0.71 (0.52-0.97)	0.031
Any Infection	0.83 (0.70-0.99)	0.035

- As randomized analysis
- Blinded assessment by two ID physicians, redacted records
- Infection types (control): skin/soft tissue (35%), pneumonia (18%), primary bloodstream/vascular (13%), bone/joint (13%), SSI (11%), UTI (3%), Other (6%)

Primary Outcome, by Adherence Time to CDC-Defined Infection

- Adherence measured at each visit, time-varying covariate
- Cox proportional hazards model

Adherence	MRSA Infection		All-Cause Infe	All-Cause Infection		
Relative to	Est. HR	P-value	Est. HR	P-value		
Education	(95% CI)	<i>P-vulue</i>	(95% CI)	P-vulue		
- Education	1.0		1.0			
- None	1.31 (0.72,2.38)	0.383	1.68 (1.19,2.36)	0.003		
- Partial	0.64 (0.40,1.00)	0.050	0.86 (0.67,1.11)	0.241		
- Full	0.56 (0.36,0.86)	0.009	0.60 (0.46,0.78)	<.001		

- Non-adherent subjects fared worse than the average control
- Fully adherent subjects had 44% reduction in MRSA infection and 40% reduction in all-cause infections

Huang SS NEJM 2019; 380(7):638-650

Number Needed to Treat

	Overall	Full Adherence
MRSA Infection	30	26
MRSA Hospitalization	34	27
Any Infection	26	11
Hospitalization due to Infection	28	12

Huang SS NEJM 2019; 380(7):638-650

Decolonization Trials Across the Continuum of Care

MRSA Outcomes

o ICU

o Non-ICU

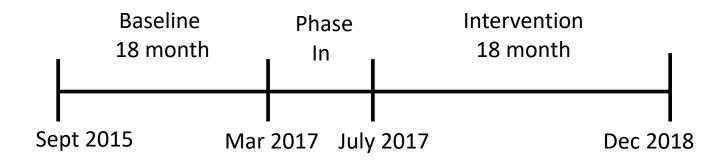
○ Post-Discharge

 $\circ\,$ Nursing Homes

Protect Trial

Trial Design

- 28 nursing home cluster randomized trial
- 18-month baseline, 18-month intervention period


Arm 1: Routine Care

• Usual practice for showering/bathing

Arm 2: Decolonization

- CHG bathing for all residents (on admit, then per routine)
- Nasal iodophor twice daily x 5 days, facility-wide every other week

Protect Trial

15,004 residents in baseline period

13,952 residents in intervention period

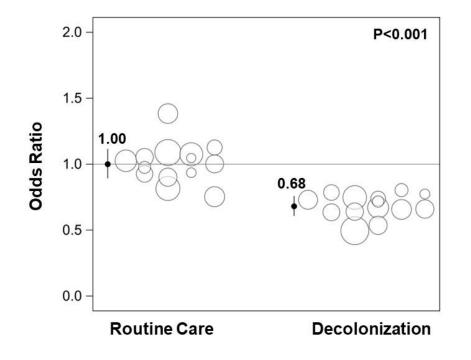
Trial Outcomes

Primary Outcome

Hospital transfers due to infection
 (% of discharges to a hospital due to infection)

Secondary Outcome

• All hospital transfers

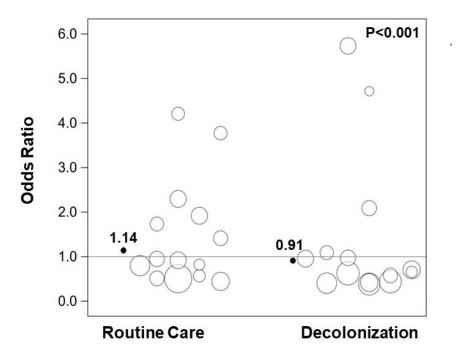

(% of discharges to a hospital)

Protect Trial MDRO Prevalence Reductions (Nares/Skin Only)

	Trial Group	Baseline Prevalence	Intervention Prevalence	Adjusted OR	P- value
Any MDRO	Routine Care	48%	47%	0.50 (0.39-0.65)	<0.001
	Decolonization	49%	31%	0.30 (0.39-0.03)	
MRSA	Routine Care	38%	36%	0.59 (0.46-0.77)	0.01
	Decolonization	37%	24%	0.39 (0.40-0.77)	
VRE	Routine Care	6%	5%	0.24 (0.13-0.45)	0.003
	Decolonization	8%	2%	0.24 (0.13-0.45)	0.005
ESBL	Routine Care	16%	18%	0.49 (0.34-0.70)	<0.001
	Decolonization	17%	9%	0.45 (0.34-0.70)	\U.UUI

Miller LG et al. IDWeek 2019

% Hospital Transfers Due to Infection



Intervention vs Baseline

Decolonization = 0.68 Routine = 1.00

Difference in Differences: 32% P<0.001

% Discharges to Hospitals

Intervention vs Baseline Decolonization = 0.91 Routine = 1.14

Difference in Differences: 23% P < 0.001

Number Needed to Treat

Hospitalization due to infection

- Treat 10 residents to prevent one hospitalization
- 1.9 hospitalizations prevented **per month** for a 100-bed NH

Training Guides & Ready-to-Use Tools

Decolonization Success Depends on Application

- Lack of training shown to yield no benefit
- Training pearls for CHG
 - Massage firmly
 - $\,\circ\,$ Avoid cotton cloths
 - Clean wounds, devices, breaks in skin
 - Check lotion, skin product compatibility
 - 4% rinse-off CHG, 2% leave-on (air dry)

Chlorhexidine Only Works If Applied Correctly: Use of a Simple Colorimetric Assay to Provide Monitoring and Feedback on Effectiveness of Chlorhexidine Application

Laura Supple, BS;¹ Monika Kumaraswami, MD;¹ Sirisha Kundrapu, MD, MS;² Venkata Sunkesula, MD, MS;² Jennifer L. Cadnum, BS;² Michelle M. Nerandzic, BS;¹ Myreen Tomas, MD;³ Curtis J. Donskey, MD^{2,3}

We used a colorimetric assay to determine the presence of chlorhexidine on skin, and we identified deficiencies in preoperative bathing and daily bathing in the intensive care unit. Both types of bathing improved with an intervention that included feedback to nursing staff. The assay provides a simple and rapid method of monitoring the performance of chlorhexidine bathing.

Infect Control Hosp Epidemiol 2015;00(0):1-3

Popovich KJ Int Care Med 2010;36(5):854-8 Supple L ICHE 2015;36(9):1095-7

Clinicians & Providers

Education & Training

Hospitals & Health Systems

Emergency Department

Tools and Resources

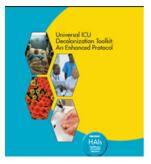
Original Defendance

Emergency Severity Index

Hospital Resources

Agency for Healthcare Research and Quality Advancing Excellence in Health Care

Health Care Information	For Patients & Consumers	For Professionals	For Policymakers	Research Tools & Data	Funding & Grants	Centers, Portfolios & Initiatives	News & Events	A A A
Home For Professionals Hospitals & Health Systems Hospital Resources Universal ICU Decolonization Protocol								
O Previous Page	9		■ Table of Co	ntents Download	I		Ne	ext Page 🤆


Universal ICU Decolonization: An Enhanced Protocol

Introduction and Welcome

This enhanced protocol is based on materials successfully used in the REDUCE MRSA Trial (Randomized Evaluation of Decolonization vs. Universal Clearance to Eliminate Methicillin-Resistant Staphylococcus aureus), which found that universal decolonization was the most effective intervention. Universal decolonization led to a 37 percent reduction in MRSA clinical cultures and a 44 percent reduction in all-cause bloodstream infections.

Publication # 13-0052-EF

Q

https://www.ahrq.gov/hai/universal-icu-decolonization/index.html

Funding & Grants ~

Home > Healthcare-Associated Infections Program > Tools > Non-ICU Patients With Devices

Data v

Research ~

Healthcare-Associated Infections Program

Combating Antibiotic-Resistant Bacteria

Programs ~

Comprehensive Unit-based Safety Program (CUSP)

National Scorecard Reports

Reducing Hospital-Acquired Conditions

Tools

Topics ~

Ambulatory Surgery Centers Toolkit

C difficile Toolkit

Central Line Insertion Checklist

CLABSI and CAUTI Prevention in

Toolkit for Decolonization of Non-ICU Patients With Devices

News ~

About ~

This toolkit can help hospital infection prevention programs implement a decolonization protocol that was found to reduce bloodstream infections by more than 30 percent in adult inpatients who were not in intensive care units (ICUs) and who had specific medical devices. It includes implementation instructions, demonstration videos, and customizable tools.

Toolkit Contents

Tools ~

The toolkit contains protocols for implementing decolonization with chlorhexidine gluconate antiseptic soap and mupirocin along with instructional handouts for staff and patients, written and video training materials to educate staff, staff skills assessments, "huddle" documents with key reminders, and frequently asked questions for staff and patients. It is suggested that you start with Introduction—Toolkit Overview and Recommended Prelaunch Activities, but use the other materials in any order or combination that meets your facility's needs.

The contents of this toolkit are below:

Introduction—Toolkit Overview, Decision Making, and Recommended Prelaunch Activities
Nursing Protocols
Instructional Handouts for Staff and Patients
Staff Training Documents and Videos
Staff Training Videos
Adherence and Skills Assessment

https://www.ahrq.gov/hai/tools/abate/index.html

SHIELD MDRO Acute & Long-Term Care Toolkits

Is SHIELD Right for You?

The SHIELD intervention is right for you if:

- Your facility is experiencing cultures or infections due to MDROs
- Your facility is worried about MDROs in general
- Your facility is willing to do a campaign to reduce MDROs
- Your facility is interested in the benefits of "decolonization" but needs "how to" help

The SHIELD program is effective against the following organisms:

- CRE: carbapenem-resistant Enterobacteriaceae
- MRSA: methicillin resistant *Staphylococcus aureus*
- VRE: vancomycin-resistant Enterococcus
- ESBL: extended spectrum beta-lactamase producers

Shared Healthcare Intervention to Eliminate Life-threatening Dissemination of MDROs

Training Video for CHG Bathing

- CHG bathing and showering instructions
- Scenarios for how to encourage patients to accept bath
- Commonly missed and important protocol details (i.e., cleaning lines, tubes, drains, superficial wounds)
- Instructions for patients wishing to self-bathe

https://www.ahrq.gov/hai/tools/abate/index.html

Importance of Nasal Decolonization

S. aureus and MRSA Infections in ICUs

- Adult ICU infections assessed in single-day multi-center chart review
- 1150 centers in 88 countries

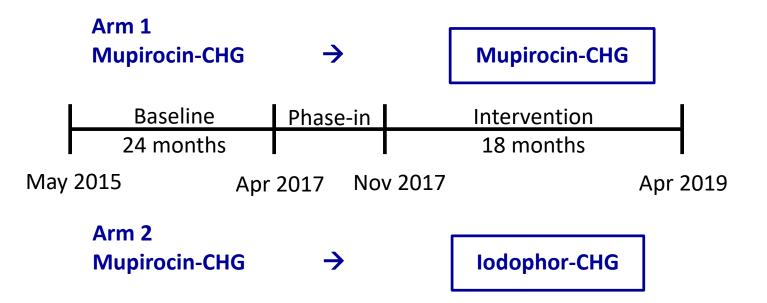
Causal Agent	Africa	America (North)	America (Central/South)	Asia/ Middle East	Australasia	Europe (Eastern)	Europe (Western)
S. aureus	8%	23%	17%	10%	17%	16%	15%
MRSA	5%	10%	7%	5%	4%	6%	2%

Vincent JL, et al. JAMA. 2020;323(15):1478-1487

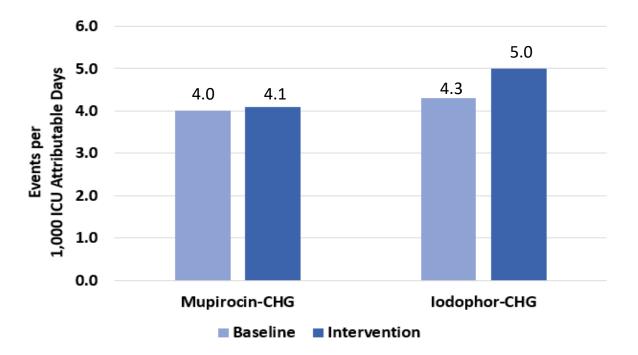
S. aureus Prevention in ICUs

- *S. aureus* main reservoir is the nose
- Nasal decolonization key to preventing *S. aureus* disease ¹
- Adoption of nasal mupirocin for universal ICU decolonization is variable despite burden of *S. aureus* ICU infections

Rationale for Mupirocin-Iodophor Swap Out Trial

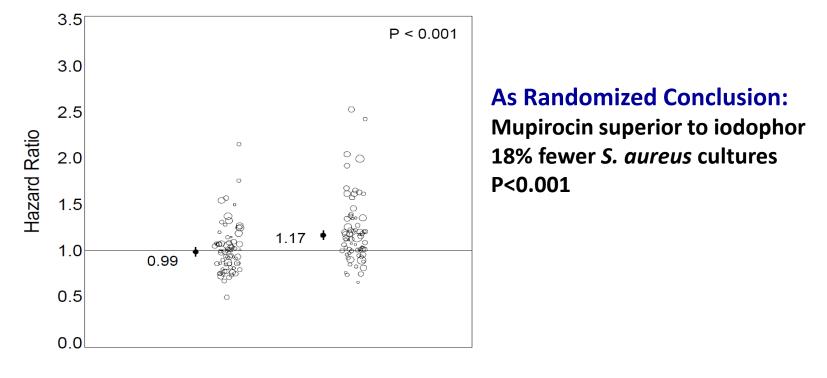

- Some are concerned universal ICU mupirocin will elicit resistance
- Iodophor and other antiseptics are less likely to lead to resistance
- Swap Out Trial: non-inferiority cluster randomized trial to assess if iodophor is as effective as mupirocin in preventing *S aureus* cultures when combined with CHG baths for ICU universal decolonization

Mupirocin-Iodophor Swap Out Trial


- 18 Month cluster-randomized ICU non-inferiority study
- 137 HCA hospitals, 233 adult ICUs
 - Mupirocin Arm: Daily CHG & 5 days twice daily 2% mupirocin
 - **Iodophor Arm:** Daily CHG & 5 days twice daily 10% iodophor
- Outcomes
 - S. aureus (MRSA & MSSA) ICU clinical cultures (primary)
 - MRSA clinical cultures
 - All-cause bacteremia
 - Emergence of resistance to mupirocin, iodophor

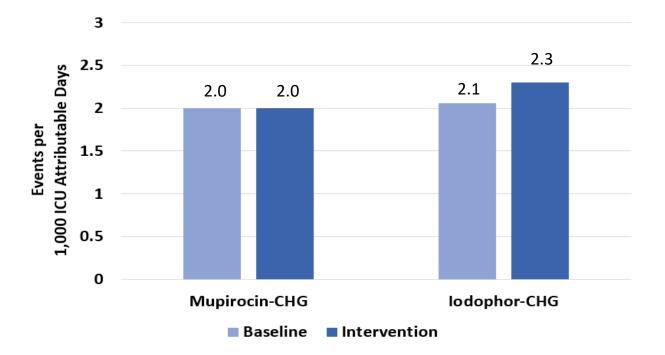
Huang SS et al. IDWeek 2021 clinicaltrials.gov/ct2/show/NCT03140423

Baseline and Intervention Periods

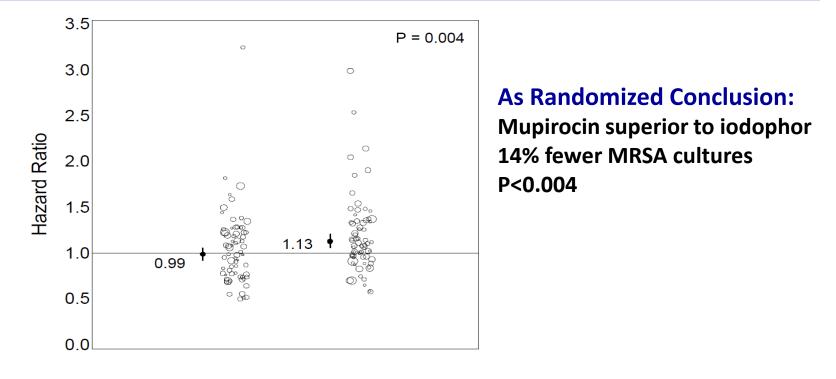


ICU-Attributable *S. aureus* Clinical Cultures As Randomized: Crude Event Rates

Provided rates are crude rates summed across all participating hospitals. Patient-days after each event were excluded

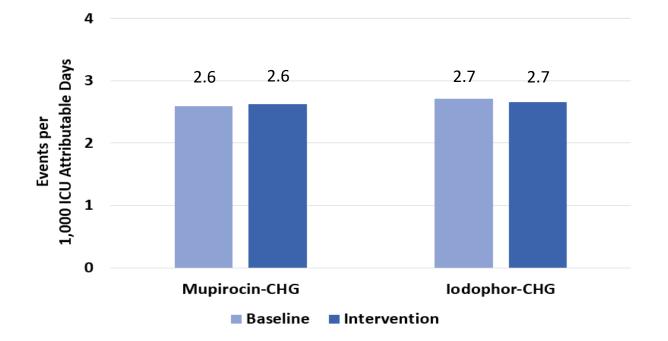

ICU-Attributable *S. aureus* Clinical Cultures As Randomized Clustered Analysis

Mupirocin

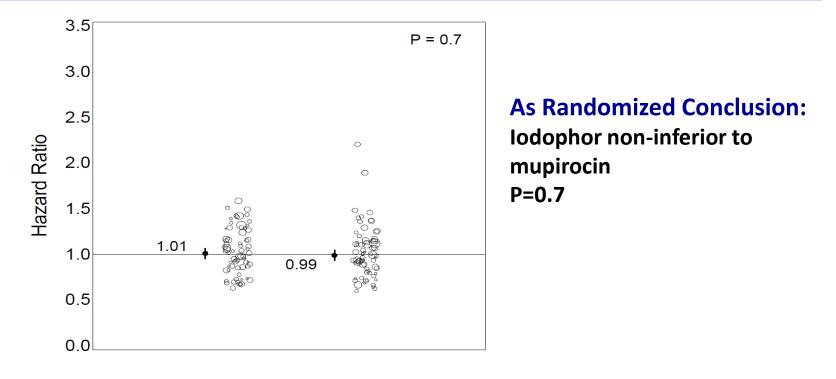

lodophor

ICU-Attributable MRSA Clinical Cultures As Randomized Crude Event Rates

Provided rates are crude rates summed across all participating hospitals. Patient-days after each event were excluded

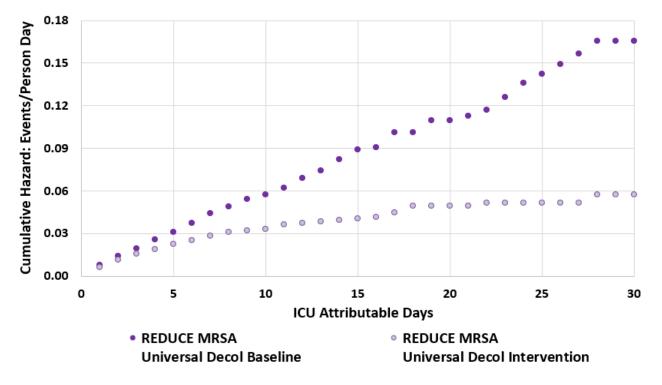

ICU-Attributable MRSA Clinical Cultures As Randomized Clustered Analysis

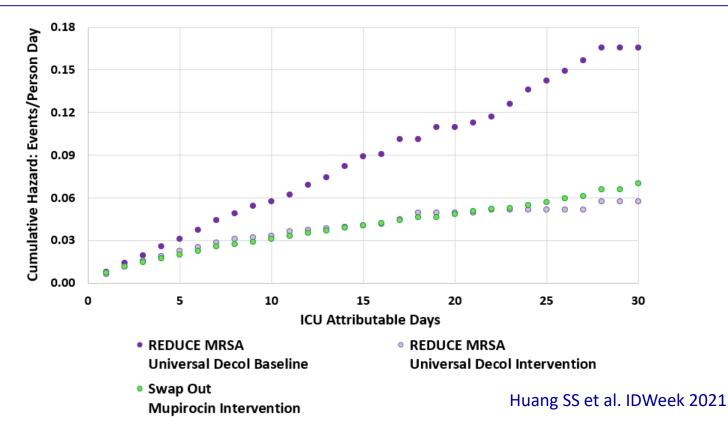
Mupirocin


lodophor

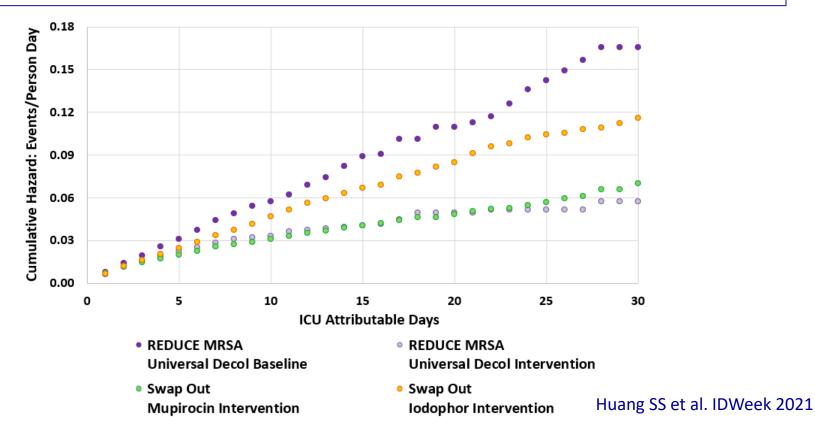
ICU-Attributable Bloodstream Infections As Randomized Crude Event Rates

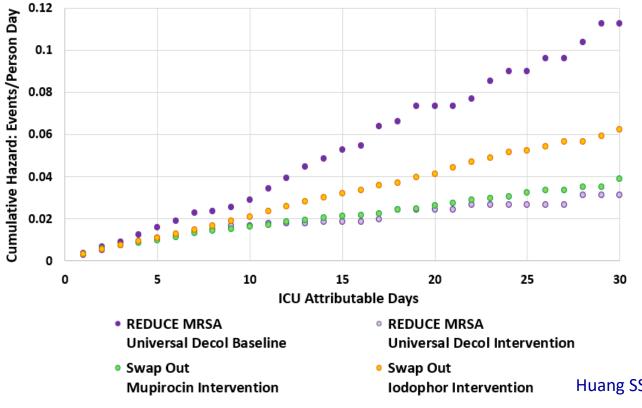
Provided rates are crude rates summed across all participating hospitals. Patient-days after each event were excluded

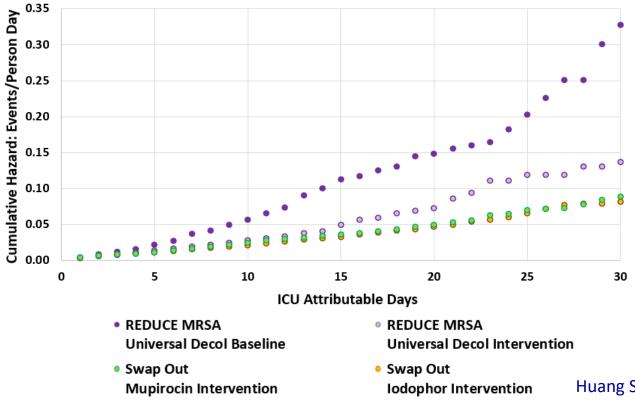

ICU-Attributable Bloodstream Infections As Randomized Clustered Analysis


Mupirocin

lodophor


REDUCE MRSA & Swap Out Trials Cumulative Hazard of *S. aureus* **Clinical Cultures**


REDUCE MRSA & Swap Out Trials Cumulative Hazard of *S. aureus* **Clinical Cultures**


REDUCE MRSA & Swap Out Trials Cumulative Hazard of *S. aureus* **Clinical Cultures**

REDUCE MRSA & Swap Out Trials Cumulative Hazard of MRSA Clinical Cultures

REDUCE MRSA & Swap Out Trials Cumulative Hazard of Bloodstream Infection

Importance of ICU Nasal Decolonization for MRSA

- S. aureus remains a formidable pathogen in ICUs
- Superiority of mupirocin over iodophor supports value of nasal decolonization
- Iodophor is superior to no nasal decolonization. May be preferred if mupirocin resistance is high or prescription logistics are problematic
- Mupirocin-CHG effect in reducing *S. aureus,* MRSA, and bloodstream infections persisted over 10 years, suggesting minimal emergence of resistance

Mupirocin Alone Works

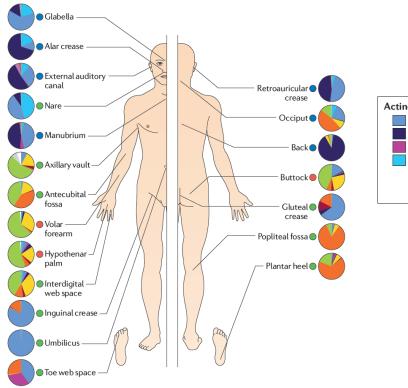
45% Inosocomial MRSA infection among treated carriers

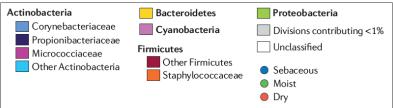
Study or subgroup	Mupirocin n/N	Control n/N	Risk Ratio M-H,Fixed,95% Cl	Weight	Risk Ratio M-H,Fixed,95% Cl
Boelaert 1989	1/17	6/18	← +	3.9 %	0.18[0.02, 1.32]
Garcia 2003	1/31	3/34	· · · · · · · · · · · · · · · · · · ·	1.9 %	0.37 [0.04, 3.33]
Harbarth 1999	3/48	7/50		4.6 %	0.45 [0.12, 1.63]
Kalmeijer 2002	2/95	5/86	←	3.5 %	0.36 [0.07, 1.82]
Konvalinka 2006	5/130	4/127		2.7 %	1.22 [0.34, 4.44]
Mup Study Group 1996	32/134	68/133	-	45.7 %	0.47 [0.33, 0.66]
Perl 2002	17/430	34/439		22.5 %	0.51 [0.29, 0.90]
Wertheim 2004b	21/793	23/809		15.2 %	0.93 [0.52, 1.67]
Total (95% CI) Total events: 82 (Mupirocin), 15 Heterogeneity: $Chi^2 = 7.24$, df Test for overall effect: Z = 4.77	$= 7 (P = 0.40); ^2 = 3\%$	1696	•	100.0 %	0.55 [0.43, 0.70]

0.1 0.2 0.5 1 2 5 10

Favours mupirocin Favours control

van Rijen M et al. Cochrane DSR. 2008;(4):CD006216


Role of CHG for MRSA and Disease Prevention

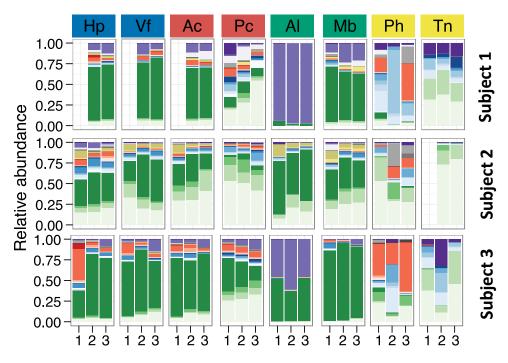

- As solo agent, CHG
 - Does not sufficiently clear MRSA for individual carriers ¹⁻²
 - Does reduce skin burden and transmission to others
 - Is active against other MDROs and pathogens

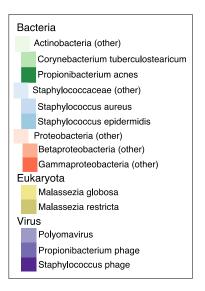
¹ Harbarth et al. AACT 1999:43(6):1412-16 ² Fritz et al. ICHE 2011:32(9):872-80

Microbiome Effects by Decolonization

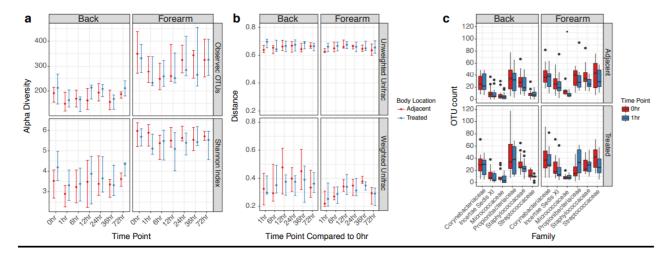
Biogeography of Human Skin Microbiota






Grice J et al. Nature 2014; 514(7520):59-64

Skin Microbiome: Individual Signatures

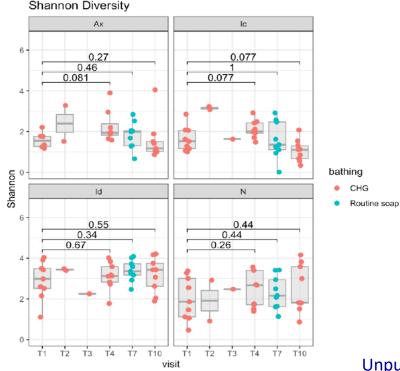


Timepoint 1-3 represent >1 year

Does CHG Reduce or Change Skin Biodiversity?

CHG and Healthy Subjects: No Change in Diversity or Richness

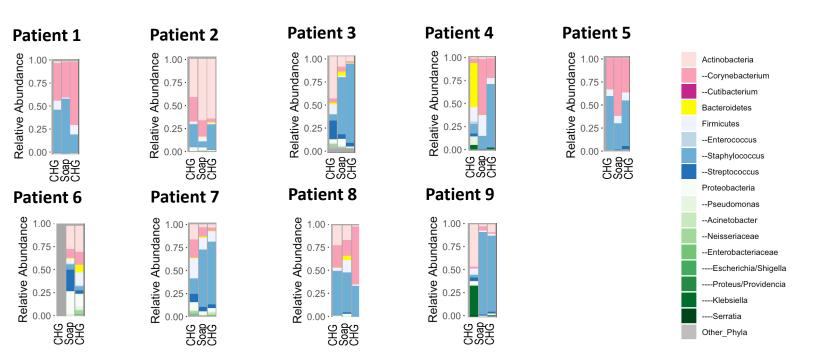
13 healthy subjects 23-30y tested several antiseptics on forearm and upper back. Sampled 1, 6, 12, 24, 36, 72h


Fig. S7. Chlorhexidine treatment does not elicit bacterial shifts. (A) Longitudinal measurements of observed species and Shannon diversity for adjacent and chlorhexidine treated body sites at the back and forearm. Data is presented by median points and interquartile regions. (B) Weighted and Unweighted UniFrac distances of subjects' longitudinal time points compared to their individual baseline communities at chlorhexidine treated and adjacent body sites. Points represent the median of participants. Error bars designate interquartile regions. (C) Box and whisker plots of OTU richness at the back and forearm for major taxa at adjacent and chlorhexidine treated body sites between baseline and 1hr time points. * P < 0.05 by Wilcoxon rank sum test (Mann-Whitney U test).

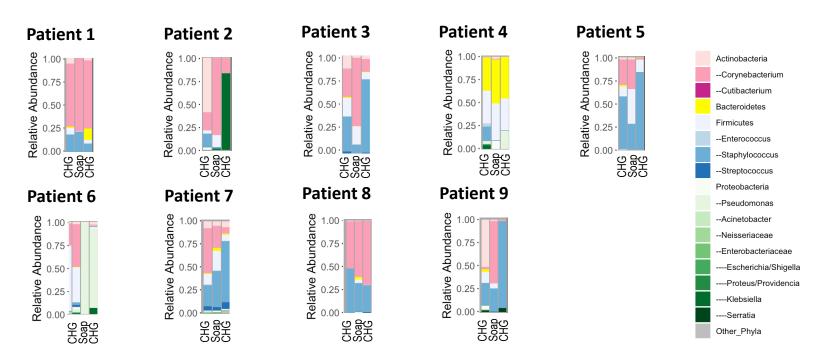
SanMiguel et al. J Invest Dermatol. 2018 Oct;138(10):2234-2243

CHG and Hospitalized Patients: Skin Microbiome Diversity Preserved

10 hospitalized adults receiving the following weekly bathing regimens:


- 1) CHG in the hospital
- 2) Routine soap at home
- 3) CHG at home

Shannon Diversity


Unpublished data

CHG and Hospitalized Patients: Axillary Skin Microbiome Taxa

Unpublished data

CHG and Hospitalized Patients: Inguinal Skin Microbiome Taxa

Unpublished data

Microbial Layers of the Skin

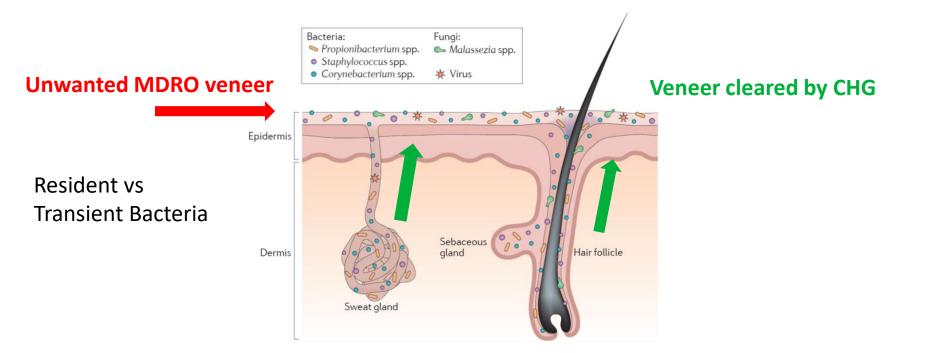


Figure from : Byrd et al. Nat Rev Microbiol 2018; 16(3):143-155

Summary: Decolonization for High-Risk Patients

• Impact

Protects ICU patients & those with devices from infection

- Reduces MDRO prevalence, spread, and infection
- Prevents hospitalization and infection in nursing homes
- Reduces bloodstream infections
- Stable benefit over nearly a decade
- Microbiome preserved

• Future Work

- Assess and expand study of high-risk patients
- Quantify risk of resistance vs averted infections
- Disentangle patient factors, antibiotics
- Expand arsenal to additional effective products

